← Back to Teaching & Resources

Local Stress

Components projected onto the rotating cube basis.
[
]

Global Stress State

$\sigma_{xx}$ 5
$\sigma_{yy}$ 0
$\sigma_{zz}$ 0
$\tau_{xy}$ 0
$\tau_{yz}$ 0
$\tau_{xz}$ 0

Governing Equations

1. Cauchy's Law (Tractions):
$$ \vec{t}^{(\vec{n})} = \boldsymbol{\sigma} \cdot \vec{n} $$ The red vectors $\vec{t}$ change as the surface normal $\vec{n}$ rotates.
2. Tensor Transformation:
$$ \boldsymbol{\sigma}_{\text{local}} = \mathbf{R}^T \, \boldsymbol{\sigma}_{\text{global}} \, \mathbf{R} $$

3. Invariants (Constant):
Trace ($I_1$): 0.00
Von Mises ($\sigma_{vm}$): 0.00
Determinant ($I_3$): 0.00
Global Fixed Axes (X,Y,Z)
Principal Stresses
Left Drag: Rotate Camera
Right Drag: Rotate Cube
Mouse Wheel: Zoom